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LOCAL CONVERGENCE RESULTS FOR NEWTON’S
METHOD

Ioannis K. Argyros* and Säıd Hilout**

Abstract. We present new results for the local convergence of
Newton’s method to a unique solution of an equation in a Banach
space setting. Under a flexible gamma–type condition [12], [13], we
extend the applicability of Newton’s method by enlarging the radius
and decreasing the ratio of convergence. The results can compare
favorably to other ones using Newton–Kantorovich and Lipschitz
conditions [3]–[7], [9]–[13]. Numerical examples are also provided

1. Introduction

In this study we are concerned with the problem of approximating a
locally unique solution x? of equation

(1.1) F (x) = 0,

where F is a Fréchet–differentiable operator defined on a convex subset
D of a Banach space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in en-
gineering are solved by finding the solutions of certain equations. For
example, dynamic systems are mathematically modeled by difference or
differential equations and their solutions usually represent the states of
the systems. For the sake of simplicity, assume that a time–invariant
system is driven by the equation ẋ = Q(x), for some suitable operator
Q, where x is the state. Then the equilibrium states are determined by
solving equation (1.1). Similar equations are used in the case of discrete
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systems. The unknowns of engineering equations can be functions (dif-
ference, differential and integral equations), vectors (systems of linear
or nonlinear algebraic equations), or real or complex numbers (single
algebraic equations with single unknowns). Excpet in special cases, the
most commonly used solution methods are iterative–when starting from
one or several initial approximations a sequence is constructed that con-
verges to a solution of the equation. Iteration methods are also applied
for solving optimization problems. In such cases, the iteration sequences
converge to an optimal solution of the problem at hand. Since all of these
methods have the same recursive structure, they can be introduced and
discussed in a general framework.

Newton’s method

(1.2) xn+1 = xn − F ′(xn)−1 F (xn) (n ≥ 0), (x0 ∈ D)

is undoubtedly the most popular method for generating a sequence ap-
proximating x?. Here F ′(x) ∈ L(X ,Y), the space of bounded linear
operators from X into Y, denotes the Fréchet–derivative of operator F
[6], [10]. A survey on local as well as semilocal convergence theorems
for Newton’s method (1.2) under Newton–Kantorovich–type or γ–type
conditions can be found in [6], [10] and the references there (see [1]–[5],
[7]–[9], [11]–[13]).

In Section 2, we provide new semilocal convergence theorem under a
γ–type condition (see Definition 2.1). We also compare semilocal and lo-
cal results on Newton’s method in order for us to answer to the question:
(which is the motivation for writing this paper)

Can you find conditions under which the largest convergence radius
and the smaller ratio can be obtained for Newton’s method ?

Numerical examples are also provided.

2. Local convergence analysis of Newton’s method (1.2)

Let b ≥ 0, γ0 > 0 and γ > 0 be given constants. It is convient for us

to define constant a and functions f0, f , g0, g on interval [0,
1
γ

) by

a =
γ0 − γ

γ
,

f(t) = b− t +
γ t2

1− γ t
,

f0(t) = f(t) + (γ − γ0) t2,
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g(t) = 3 t2 − t− 1

and
g0(t) = 2 a (1− t) t2 − g(t).

We shall assume:
γ0 < γ.

Set

t1 =
1 +

√
13

6
.

It then follows that g(t1) = 0 and g0(t1) < 0.
Therfore, by the intermediate value theorem, there exists a real t0 ∈

(0, t1) such that:
g0(t0) = 0.

Denote also by t0 to the minimal such number in (0, t1). Set

t0 = 1− γ r0

and
t1 = 1− γ r1.

It then follows that

r1 =
5−√13

6 γ
< r0.

Note also that if γ = γ0, then r0 = r1, t0 = t1, f(t) = f0(t) and
g(t) = g0(t) on [0, t0). We need the following definition of a γ–type
condition:

Definition 2.1. Let F : D ⊆ X −→ Y be a thrice–Fréchet–
differentiable operator. We say that operator F satisfies the (γ0, γ)–
condition at x? ∈ D if

F ′(x?)−1 ∈ L(Y,X );

‖ F ′(x?)−1 F ′′(x?) ‖≤ 2 γ0,

‖ F ′(x?)−1 F ′′′(x?) ‖

≤ 6 γ2

(1− γ ‖ x− x? ‖)4 = f ′′′0 (‖ x− x? ‖) = f ′′′(‖ x− x? ‖).

for all x ∈ D and

U(x?, r0) = {x ∈ X : ‖ x− x? ‖≤ r0} ⊆ D,
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Note that a suitable choice (but not the only one) for γ0 and γ is:
γ > γ0 and

γ0 = sup
k≥2

‖ F ′(x?)−1F (k)(x?)
k!

‖ 1
k−1 ,

provided that operator F is analytic on U(x?, r0) [12], [13] and the supre-
mum is finite.

If γ0 = γ, then we replace r0 by r1 in Definition 2.1.
We also need the following lemma connecting operator F with ma-

jorizing function f0.

Lemma 2.2. Suppose that F satisfies the (γ0, γ)–condition. Then the
following hold

‖ F ′(x?)−1 F ′′(x) ‖≤ f ′′0 (‖ x− x? ‖),
F ′(x)−1 ∈ L(Y,X )

and

‖ F ′(x)−1 F ′(x?) ‖≤ − 1
f ′0(‖ x− x? ‖) .

for all x ∈ U(x?, r0).

Proof. Using Defintion 2.1, we obtain in turn:

‖ F ′(x?)−1 F ′′(x) ‖
=‖ F ′(x?)−1 F ′′(x?) ‖ + ‖ F ′(x?)−1 (F ′′(x)− F ′′(x?)) ‖

≤ 2 γ0+ ‖
∫ 1

0
F ′(x?)−1 F ′′′(x? + t (x− x?)) (x− x?) dt ‖

≤ 2 γ0 +
∫ 1

0
f ′′′0 (t ‖ x− x? ‖) ‖ x− x? ‖ dt

= 2 γ0 + f ′′0 (‖ x− x? ‖)− f ′′(0) = f ′′0 (‖ x− x? ‖).
Moreover, we have

‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖

=‖ F ′(x?)−1

∫ 1

0
F ′′(x? + t (x− x?)) (x− x?) dt ‖

≤
∫ 1

0
f ′′0 (t ‖ x− x? ‖) ‖ x− x? ‖ dt

= f ′0(‖ x− x? ‖)− f ′0(0) = f ′0(‖ x− x? ‖) + 1 < 1.
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It follows from the Banach Lemma on invertible operators [3], [7] that
F ′(x)−1 ∈ L(Y,X ) and

‖ F ′(x)−1 F ′(x?) ‖≤ 1
1− ‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖

≤ − 1
f ′0(‖ x− x? ‖) .

That complete the proof of the lemma.

We can show the following local convergence theorem for Newton’s
method:

Theorem 2.3. Let F : D ⊆ X −→ Y be a thrice–Fréchet–
differentiable operator. Then under hypotheses of Definition 2.1, with
γ0 = γ, sequence {xn} generated by the Newton–type method (1.2)
is well defined, remains in U(x?, r1) for all n ≥ 0 and converges
to the unique zero of equation F (x) = 0 in U(x?, r1) provided that
x0 ∈ U(x?, r1). Moreover the following estimates hold for all n ≥ 0:

(2.1) ‖ xn+1 − x? ‖≤ an bn ‖ xn − x? ‖2,

where

an = an(‖ xn − x? ‖) = −g′(‖ xn − x? ‖)−1

and

bn = bn(‖ xn − x? ‖) =
γ

1− γ ‖ xn − x? ‖ .

Proof. By hypothesis, we see that x0 ∈ U(x?, r1). Using induction on
k ≥ 0, we shall show that xk+1 ∈ U(x?, r1), so that (2.1) holds true. By
Lemma 2.2, for x = xk, we get F ′(xk)−1 ∈ L(Y,X ) and

(2.2) ‖ F ′(xk)−1 F ′(x?) ‖≤ −f ′(‖ xk − x? ‖)−1
.

In view of the identity

(2.3)
xk+1 − x? = −(F ′(xk)−1 F ′(x?))F ′(x?)−1

∫ 1

0
F ′′(x? + t (xk − x?)) (1− t) (xk − x?)2 dt

and Definition 2.1, we get in turn

(2.4)
‖ F ′(x?)−1

∫ 1

0
F ′′(x? + t (xk − x?)) (1− t) (xk − x?)2 dt ‖

≤ γ ‖ xk − x? ‖2

1− γ ‖ xn − x? ‖ = bk ‖ xk − x? ‖2 .
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It then follows from (2.2)–(2.4) that

‖ xk+1 − x? ‖≤ ak bk ‖ xk − x? ‖2

≤ ak(r1) bk(r1) r1 ‖ xk − x? ‖≤‖ xk − x? ‖< r1

which shows xk+1 ∈ U(x?, r1) and lim
k→∞

xk = x?. Finally, to show unique-

ness, let y? be a solution of equation (1.1) in U(x?, r1) . Then, we get
by Definition 2.1

(2.5)

‖ F ′(x?)−1

∫ 1

0
(F ′(x? + t (y? − x?))− F ′(x?)) dt ‖

≤‖ F ′(x?)−1

∫ 1

0

∫ 1

0
F ′′(x? + s t (y? − x?)) ds dt (t (y? − x?)) ‖

≤
∫ 1

0

∫ 1

0
f ′′(s t ‖ y? − x? ‖) t ds dt ‖ y? − x? ‖

=
∫ 1

0
f ′(t ‖ y? − x? ‖) dt + 1 < 1.

It follows from (2.5) and the Banach lemma of invertible operators that

M =
∫ 1

0
F ′(x? + t (y? − x?)) dt is invertible. In view of the identity

F (y?)− F (x?) = M (y? − x?),

we get x? = y?. That completes the proof of the theorem.

Under Definition 2.1 for γ0 < γ, we can show the following improve-
ment of Theorem 2.3:

Theorem 2.4. Let F : D ⊆ X −→ Y be a thrice–Fréchet–
differentiable operator. Then under hypotheses of Definition 2.1, with
γ0 < γ, sequence {xn} generated by the Newton–type method (1.2)
is well defined, remains in U(x?, r0) for all n ≥ 0 and converges
to the unique zero of equation F (x) = 0 in U(x?, r0) provided that
x0 ∈ U(x?, r0). Moreover the following estimates hold for all n ≥ 0:

(2.6) ‖ xn+1 − x? ‖≤ an bn ‖ xn − x? ‖2,

where

an = −g′0(‖ xn − x? ‖)−1

and

bn = bn + γ0 − γ.

Proof. It follows exactly as in Theorem 2.3 with g0, f0, r0 replacing
g, f and r1 respectively.
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In order for us to compare the ratios in the above theorems, let

cn = an bn

and
cn = an bn.

Then using induction on k ≥ 0, we arrive at:

Proposition 2.5. Under hypotheses of Theorems 2.3 and 2.4,

(2.7) cn ≤ cn

and

(2.8) r1 ≤ r0

hold for n ≥ 0. Moreover if γ0 < γ, then (2.7) and (2.8) hold as strict
inequalities.

That is, in Theorem 2.4, a larger radius and a smaller ratio of con-
vergence are obtained than in Theorem 2.3. In this way, the number
of initial guesses is enlarged and the number of steps required to ob-
tain a desired error tolerance ε > 0 is smaller. These observations are
important in computational mathematics [1], [6], [7], [14].

Under the selection of γ?, Wang and Zhao in [13] provided the radius
of convergence given by

r2 =
3− 2

√
2

2 γ?
< r1 < r0,

for γ? = γ0 and γ ≥ γ0. That is, Theorem 2.4 provides the largest radius
and the smallest ratio of convergence under the γ–condition. It turns
out that Theorem 2.4 can compare favorably with others theorems using
Lipschitz–type conditions

‖ F ′(x?)−1 (F ′(x)− F ′(y)) ‖≤ l ‖ x− y ‖
and

‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖≤ l0 ‖ x− x? ‖
for all x, y ∈ D. Indeed Rheinboldt’s [11] ball rW is given by

rW =
2
3 l

and Argyros’ [3, 6] ball rA is given by

rA =
2

2 l0 + l
.
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Note that since l0 ≤ l and
l

l0
can be arbitrarily large [4]–[6], we obtain

rW < rA,

unless if l0 = l.

Remark 2.6. As noted in [1], [5], [6], [7], [10], [14] the local results
obtained here can be used for projection method such us Arnold’s, the
generalized minimum residual method (GMRES), the generalized con-
jugate residual method (GCR), for combined Newton/finite projection
methods and in connection with the mesh independence principle to
develop the cheapest and most efficient mesh refinement strategies.

Remark 2.7. The local results obtained can also be used to solve
equation of the form F (x) = 0, where F ′ satisfies the autonomous dif-
ferential equation [4]:

(2.9) F ′(x) = P (F (x)),

where P : Y −→ X is a known continuous operator. Since F ′(x?) =
P (F (x?)) = P (0), we can apply our results without actually knowing
the solution of x? of equation (1.1).

We complete this study with a simple numerical example where we
compare the radii introduced above.

Example 2.8. Let X = Y = R, D = U(0, 1) and define function h
on D by

F (x) = ex − 1.

Note that we can set P (x) = x + 1 in (2.9). It can easily be seen that

l0 = e− 1, l = e, γ0 = γ =
1
2

and γ? <
1
2
. Therefore, we get

rR = .245252961, rA = .324947231 and r0 = r1 = .46481624.

which justify the claims made above this example.
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